Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Gene Rep ; 26: 101537, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664941

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of the coronavirus disease (COVID-19) pandemic, has infected millions of people globally. Genetic variation and selective pressures lead to the accumulation of single nucleotide polymorphism (SNP) within the viral genome that may affect virulence, transmission rate, viral recognition and the efficacy of prophylactic and interventional measures. To address these concerns at the genomic level, we assessed the phylogeny and SNPs of the SARS-CoV-2 mutant population collected to date in Iran in relation to globally reported variants. Phylogenetic analysis of mutant strains revealed the occurrence of the variants known as B.1.1.7 (Alpha), B.1.525 (Eta), and B.1.617 (Delta) that appear to have delineated independently in Iran. SNP analysis of the Iranian sequences revealed that the mutations were predominantly positioned within the S protein-coding region, with most SNPs localizing to the S1 subunit. Seventeen S1-localizing SNPs occurred in the RNA binding domain that interacts with ACE2 of the host cell. Importantly, many of these SNPs are predicted to influence the binding of antibodies and anti-viral therapeutics, indicating that the adaptive host response appears to be imposing a selective pressure that is driving the evolution of the virus in this closed population through enhancing virulence. The SNPs detected within these mutant cohorts are addressed with respect to current prophylactic measures and therapeutic interventions.

2.
Comput Struct Biotechnol J ; 18: 2117-2131, 2020.
Article in English | MEDLINE | ID: covidwho-723392

ABSTRACT

There are no approved target therapeutics against SARS-CoV-2 or other beta-CoVs. The beta-CoV Spike protein is a promising target considering the critical role in viral infection and pathogenesis and its surface exposed features. We performed a structure-based strategy targeting highly conserved druggable regions resulting from a comprehensive large-scale sequence analysis and structural characterization of Spike domains across SARSr- and MERSr-CoVs. We have disclosed 28 main consensus druggable pockets within the Spike. The RBD and SD1 (S1 subunit); and the CR, HR1 and CH (S2 subunit) represent the most promising conserved druggable regions. Additionally, we have identified 181 new potential hot spot residues for the hSARSr-CoVs and 72 new hot spot residues for the SARSr- and MERSr-CoVs, which have not been described before in the literature. These sites/residues exhibit advantageous structural features for targeted molecular and pharmacological modulation. This study establishes the Spike as a promising anti-CoV target using an approach with a potential higher resilience to resistance development and directed to a broad spectrum of Beta-CoVs, including the new SARS-CoV-2 responsible for COVID-19. This research also provides a structure-based rationale for the design and discovery of chemical inhibitors, antibodies or other therapeutic modalities successfully targeting the Beta-CoV Spike protein.

SELECTION OF CITATIONS
SEARCH DETAIL